A Finite Difference Scheme based on Cubic Trigonometric B-splines for Time Fractional Diffusion-wave Equation

نویسنده

  • Muhammad Abbas
چکیده

In this paper, we propose an efficient numerical scheme for the approximate solution of the time fractional diffusion-wave equation with reaction term based on cubic trigonometric basis functions. The time fractional derivative is approximated by the usual finite difference formulation and the derivative in space is discretized using cubic trigonometric B-spline functions. A stability analysis of the scheme is conducted to confirm that the scheme does not amplify errors. Computational experiments are also performed to further establish the accuracy and validity of the proposed scheme. The results obtained are compared with a finite difference schemes based on the Hermite formula and radial basis functions. It is found that our numerical approach performs superior to the existing methods due to its simple implementation, straight forward interpolation and very less computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

The application of cubic trigonometric B-spline to the numerical solution of the hyperbolic problems

In this paper, a collocation finite difference scheme based on new cubic trigonometric B-spline is developed and analyzed for the numerical solution of a one-dimensional hyperbolic equation (wave equation) with non-local conservation condition. The usual finite difference scheme is used to discretize the time derivative while a cubic trigonometric B-spline is utilized as an interpolation functi...

متن کامل

Cubic Trigonometric B-spline Approach to Numerical Solution of Wave Equation

Abstract—The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating functi...

متن کامل

Numerical solution of second-order hyperbolic telegraph equation via new cubic trigonometric B-splines approach

This paper presents a new approach and methodology to solve the second-order one-dimensional hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions using the cubic trigonometric B-spline collocation method. The usual finite difference scheme is used to discretize the time derivative. The cubic trigonometric B-spline basis functions are utilized as an interpolating function...

متن کامل

A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation

In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017